IL-6 Enhances Osteocyte-Mediated Osteoclastogenesis by Promoting JAK2 and RANKL Activity In Vitro.
نویسندگان
چکیده
BACKGROUND/AIMS Evidence suggests that IL-6 affects bone mass by modulating osteocyte communication towards osteoclasts. However, the mechanism by which IL-6 enhances osteocyte-mediated osteoclastogenesis is unclear. We aimed to investigate the inflammatory factors in serum after orthodontic surgery and their relationship between osteocytes and osteoclasts. METHODS Serum was obtained from 10 orthognathic surgery patients, and inflammatory factors were detected by ELISA. We treated the osteocyte-like cell line MLO-Y4 with recombinant mouse IL-6 and IL-6 receptor (IL-6R), and used quantitative RT-PCR and Western blotting to explore Receptor activator of nuclear factor-κB ligand (RANKL) expression at both the mRNA and protein level. MLO-Y4 cells were co-cultured with osteoclast precursor cells, and the formation of osteoclasts was detected by tartrate-resistant acid phosphatase (TRAP) staining. To explore the role of JAK2 in the osteocyte-mediated osteoclastogenesis, AG490, a JAK2 inhibitor, was used to inhibit the JAK2-STAT3 pathway in osteocytes. RESULTS In our study, we found that IL-6 and RANKL were stimulated in serum 3-7 days after orthognathic surgery. Therefore, IL-6 and IL-6 receptor enhanced the expression of RANKL at both the mRNA and protein level in MLO-Y4. Furthermore, when MLO-Y4 cells were co-cultured with osteoclast precursor cells, it significantly stimulated osteoclastogenesis. Our study indicated that osteocytes could promote osteoclastic differentiation and the formation of TRAP-positive multinucleated cells after stimulation with IL-6 and IL-6R. Our results also indicated that treatment with IL-6 and IL-6R increased RANKL mRNA expression and the RANKL/OPG expression ratio. Meanwhile, the phosphorylation of Janus kinase 2 (JAK2) and Signal transducer and activator of transcription (STAT3) also correlated with RANKL levels. Furthermore, we investigated the effects of a specific JAK2 inhibitor, AG490, on the expression of RANKL in osteocyte-like MLO-Y4 cells and osteocyte-mediated osteoclastogenesis. The results showed that AG490 inhibited (p)-JAK2 and RANKL expression. Osteoclastic differentiation was decreased after pretreatment in MLO-Y4 with mouse IL-6/IL-6R and AG490; therefore, we concluded that IL-6 increased osteocyte-mediated osteoclastic differentiation by activating JAK2 and RANKL. CONCLUSION The effects of IL-6/il-6R and AG490 on osteocyte-mediated osteoclastogenesis contribute to our understanding of the role of inflammatory factors in the interaction between osteocytes and osteoclast precursors. IL-6 and RANKL are key factors for bone remodelling after the orthodontic surgery, and their roles in bone remodelling may be fundamental mechanisms accelerating tooth movement by orthodontic surgery.
منابع مشابه
A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro
The Janus kinases (Jaks) are hubs in the signaling process of more than 50 cytokine or hormone receptors. However, the function of Jak in bone metabolism remains to be elucidated. Here, we showed that the inhibition of Jak1 and/or Jak2 in osteoblast-lineage cells led to impaired osteoclastogenesis due to the reduced expression of receptor activator of nuclear factor-κB ligand (RANKL). Murine ca...
متن کاملCombination of IL-6 and sIL-6R differentially regulate varying levels of RANKL-induced osteoclastogenesis through NF-κB, ERK and JNK signaling pathways
Interleukin (IL)-6 is known to indirectly enhance osteoclast formation by promoting receptor activator of nuclear factor kappa-B ligand (RANKL) production by osteoblastic/stromal cells. However, little is known about the direct effect of IL-6 on osteoclastogenesis. Here, we determined the direct effects of IL-6 and its soluble receptor (sIL-6R) on RANKL-induced osteoclast formation by osteoclas...
متن کاملPIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts.
Cytokine signaling via various transcription factors regulates receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-mediated osteoclast differentiation from monocyte/macrophage lineage cells involved in propagation and resolution of inflammatory bone destruction. Protein inhibitor of activated STAT3 (PIAS3) was initially identified as a molecule that inhibits DNA binding of STAT3 and...
متن کاملTnf-alpha and Rankl Cooperatively Mediate Implant Particle-induced Osteoclastogenesis via Distinct Actions
Introduction: Periprosthetic osteolysis stimulated by implant particulate debris is mediated by various pro-inflammatory cytokines (TNF-alpha, IL-1, and IL-6) that enhance osteoclast differentiation and activity, yet TNF-alpha (TNF) has recently been identified as playing a critical role in this process (1,2). Specifically, in osteoclast precursor cells implant particles activate the nuclear tr...
متن کاملUnfractionated Heparin Promotes Osteoclast Formation in Vitro by Inhibiting Osteoprotegerin Activity.
Heparin has been proven to enhance bone resorption and induce bone loss. Since osteoclasts play a pivotal role in bone resorption, the effect of heparin on osteoclastogenesis needs to be clarified. Since osteocytes are the key modulator during osteoclastogenesis, we evaluated heparin's effect on osteoclastogenesis in vitro by co-culturing an osteocyte cell line (MLO-Y4) and pre-osteoclasts (RAW...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2017